History of formation and development of nuclear energy

Today, nuclear energy is a concept that is no longer strange to each person. Along with fusion energy, solar energy, wind power, . this is expected to be a high-performance energy source of the future to replace fossil fuels to limit gas greenhouse gas emissions, dust emissions reduction, etc. In the history of development, nuclear energy has many diverse applications, from energy production, weapons manufacturing to even scientific research. other. Now let's go back to 1789 with the German chemist, Martin Klaproth .

Uncover natural uranium atoms

Uranium was first discovered in 1789 by the German chemist Martin Klaproth and named after Uranus.

Picture 1 of History of formation and development of nuclear energy
Martin Klaproth, a German chemist who discovered uranium for the first time in 1789

Ion radiation was discovered in 1895 by Wilhelm Rontgen in an experiment that ran an electric current through a glass vacuum tube and made continuous X-rays. Next in 1896, Henri Becquerel discovered that pebble ore (a mineral ore containing radium and uranium) capable of darkening the image glass. He studied the phenomenon and demonstrated that it was due to beta radiation (electron) and alpha particles (Helium nuclei) emitted.

Later, French physicist Paul Villard discovered a third form of radiation in perchite: gamma rays, which are similar to X-rays. In 1896, Pierre and Marie Curie named "radioactivity" ( radioactivity) to describe this phenomenon. Two years later, in 1898, they separated Polonium and radium from perchite. In 1898, Samuel Prescott discovered that radiation could destroy bacteria in food.

Picture 2 of History of formation and development of nuclear energy
Pierre and Marie Curie named "radioactivity" to describe the phenomenon of nuclear decay

In 1902, New Zealand physicist Ernest Rutherford (1871-1937) proved that radioactivity is a spontaneous event, alpha or beta particles emitted from the nucleus can produce many integers. Different elements. He (along with Soddy) came up with the theory of radioactive decay and demonstrated the formation of helium in radioactivity. He is considered the "father" of nuclear physics when he modeled the atomic planet and laid the basis for modern theories of atomic structure later on. Since 1919, he worked at Cambridge. Here, he successfully performed an experiment to fire an alpha particle into a nitrogen molecule. He realized that the nitrogen nucleus had a rearrangement and turned into oxygen.

Picture 3 of History of formation and development of nuclear energy
Polite ore, a mineral ore containing radium and uranium in nature

Niels Bohr (1885-1962), a Danish physicist, also contributed to the understanding of atoms and the distribution of electrons around the nucleus in the 1940s. Bohr was awarded the Nobel Prize in 1922. about important contributions in atomic research and quantum mechanics. He is considered one of the most famous physicists in the 20th century.

Picture 4 of History of formation and development of nuclear energy
Niels Bohr (1885-1962), a Danish physicist also made many contributions to the understanding of atoms and the distribution of electrons around the nucleus in the 1940s.

By 1911, British physicist Frederick Soddy (1877-1956) discovered that radioactive elements in nature have a number of different isotopes (radionuclides). Also in 1911, Hungarian chemist George Charles de Hevesy (1885-1966) used isotopes as markers to study chemical processes. In the chemistry career of Hevesy, there was also an interesting point when Germany invaded Denmark, he dissolved the gold medal of James Franck and Max von Laue into the fortress so that they would not fall into the hands of fascists. . After the war ended, he returned and used the stored solution, trying to precipitate the dissolved gold. The gold was handed back to the Swedish Academy of Sciences so that they could recapture a new medal to give to Franck and Laue.

In 1932, James Chadwick discovered the existence of a neutron. Also in 1932, Cockcroft and Walton created modified nuclei by bombarding atoms with accelerated protons. Later, in 1934, Irene Curie and Frederic Joliot discovered the changes of nuclear during bombardment that created artificial radioactive isotopes. A year later, Italian physicist Enrico Fermi (1901-1954) discovered that using a neutron to bombard a proton could produce more artificial radioactive copper. Fermi has made great contributions to the development of beta decay, developing the first human nuclear reactor.

At the end of 1938, two German chemists Otto Hahn (1879-1968) and Fritz Strassmann (1902-1980), in the experiment proved that the fission reaction showed that a mass of Bari molecule was created. equal to half of the original mass of Uranium. Later, the Swedish female physicist Lise Meitner (1878-1968) and her grandson, Otto Frisch, proved the nature of the fission process because the nucleus retained the neutrons, these neutrons. causing strong vibrations in the nucleus causing it to break into two equal parts. At the same time, the two researchers also estimated that the energy released from nuclear fission is about 200 million volts. Subsequently, Frisch continued to examine and confirm the figure in January 1939.

At the same time, Frisch's testimony also confirmed Albert Einstein's prediction about the relationship between mass and energy published more than 30 years earlier, in 1905.

Exploiting energy from nuclear fission

The successes in the nuclear fission experiment conducted by Frisch and other scientists in 1939 have attracted the interest of many other scientists to conduct laboratory research. In subsequent studies conducted by Hahn and Strassmann, it has been shown that in nuclear fission process not only releases a lot of energy but also produces additional neutrons. These neutrons can continue to produce fission of other uranium nuclei thereby forming a self-sustaining chain reaction to create an immensely large amount of energy. This property was soon verified and confirmed by many other scientists including Joliot and colleagues in Paris as well as Leo Szilard and Fermi in New York.

From the first studies, Bohr soon realized that nuclear fission is more likely to occur in the uranium-235 isotope than the U-238 isotope. At the same time, he predicts that the process of particle division takes place more effectively when using slow moving neutrons instead of high-speed neutrons. This view was later confirmed by Szilard and Fermi, two researchers also proposed using "moderator devices" to slow down the released neutrons. Bohr and Wheeler then extended the idea, thus forming the most important component in the system for performing nuclear fission. Bohr's research papers were published just two days before World War II broke out in 1939.

Picture 5 of History of formation and development of nuclear energy
Content of natural uranium isotopes

During this period, the researchers also discovered that the U-235 isotope only accounts for 0.7% of natural uranium. The remaining 99.3% is U-238 isotope with similar chemical properties. With such a large scale difference, splitting natural uranium ore to obtain pure U-235 is not a simple thing because it requires the use of completely different physical methods. The increase in the ratio of the main U-235 isotope is the "uranium enrichment" concept that we have often heard of.

Another study in the development of nuclear energy during this period was the idea of ​​a fission bomb (atomic bomb), introduced by French physicist Francis Perrin (1901-1992) in 1939. Perrin who proposed the amount of uranium needed to produce a self-sustaining and energy-releasing nuclear fission system. Perrin's theory was extended by Rudolf Peierls at Birmingham University and the calculated results contributed a great deal to the creation of the atomic bomb later.

Picture 6 of History of formation and development of nuclear energy
French physicist Francis Perrin (1901-1992), who contributed significantly to the development and manufacture of atomic bombs.

In Paris, Perrin's group went on to research and demonstrate that it is possible to carry out self-sustaining reactions in water (to slow down neutrons). The introduction of external neutrons into the reaction system is also carried out in the water environment. At the same time, the research team has also demonstrated that neutron uptake materials can be used to control the process of nuclear reactions. All of these are important components for the operation of a typical nuclear reactor.

Picture 7 of History of formation and development of nuclear energy
German physicist Werner Heisenberg (1901-1976), one of the most famous physicists of the 20th century and made an important contribution to the creation of quantum mechanics.

From April 1939, German physicist Werner Heisenberg (1901-1976) and his students began implementing nuclear energy projects under the supervision of the Nazi Landmine Committee. Initially, the project was launched with the goal of manufacturing nuclear weapons, but by 1942, the project was officially closed with the conclusion of the impossibility of applying nuclear energy to the purpose of concern.

However, the existence of the project has spurred the development of atomic bombs in Britain and America during wartime. Werner Heisenberg is considered one of the most famous physicists of the 20th century and has made an important contribution to the creation of quantum mechanics. Werner Heisenberg was awarded the Nobel Prize in 1932 and if you notice, the name Heisenberg was chosen by White in Breaking Bad as a nickname for his underground activities.

Nuclear physics cannot fail to mention Russia's contribution

The development of nuclear physics in Russia began to rekindle more than a decade before the Bolshevik Revolution broke out. Studies have been carried out based on radioactive ores found in Central Asia since 1900. In 1909, the St Petersburg Academy of Sciences began conducting large-scale studies.

Later, the Russian revolution in 1917 strongly promoted research on nuclear physics and as a result, more than 10 research institutes were established in major cities in Russia in the following years. In the 1920s and early 30s of the 20th century, Russia announced a series of new policies calling for researchers working abroad to return to Russia to improve their expertise in the field. Nuclear physics quickly. Large scientists have responded to calls including Kirill Sinelnikov, Pyotr Kapitsa and Vladimir Vernadsky.

Since the early 1930s, many research centers specializing in nuclear physics have been established and put into operation. Kirill Sinelnikov returned from Cambridge in 1931 to set up a nuclear research department at the Ukrainian Institute of Physics Technology (FTI) established in 1928 in Kharkov. Well-known physicist Abram Ioffe also formed a research team at the Leningrad Institute of Physical Engineering, then developed into a nuclear physics science institute led by Kurchatov in 1933 with four separate laboratories.

At the end of the decade, there were many magnetic resonance accelerators installed at the Leningrad nuclear research institute. This was the largest nuclear laboratory in Europe at that time. However, research work was somewhat disrupted by the purgatory of the Stalin government in the 1939s. However, in 1940 witnessed tremendous progress in understanding and implementing fission reactions. necklace.

This was followed by the formation of the "Committee on Nuclear Energy" under the leadership of Kurchatov in 1940 and conducting exploration and exploitation of nuclear material mines in Central Asia. Later, the German tattoo strategy into Russia since 1941 has turned most of this research into potential military applications.

The process of conceiving the first atomic bombs

During the war phase, British scientists were under great government pressure to research nuclear weapons. Two refugee physicists to England, Peierls and Fisch, have contributed significantly to militarizing nuclear energy with the famous 3-page record of key concepts in the operation of atomic bombs.

In the record, the researchers estimated that 5 kg of pure U-235 used to make an atomic bomb could create an explosion equivalent to several thousand tons of explosives. In the written record, the group of two physicists also proposed how to detonate an atom bomb, how to purify U-235 and the effects of radiation after the explosion. Now, the proposed method to enrich U-235 from natural ore is heat. The record of the two researchers stimulated the development of an atomic bomb not only in the UK but also in the United States in subsequent years.

A group of well-known scientists formed the committee named MAUD in the UK and conducted studies under the supervision of Birmingham University, Bristol, Cambridge, Liverpool and Oxford. Problems of making uranium gas compounds as well as pure uranium metals have been successfully studied at the University of Birmingham and the British Royal Chemical Industry Institute (ICI). Dr. Philip Baxter at ICI successfully prepared a small amount of Urunium Hexaflorua gas in 1940. Soon after, ICI received a contract to officially produce 3 kg of this material for future research activities. hybrid

During this period, Cambridge University also contributed two other important studies. The first study demonstrated that the reaction line could be made in a mixture of uranium oxide and heavy water to slow down neutrons, ie, full-output bows more than input neutrons. The second important study is carried out by Bretscher and Feather based on previous work by Halban and Kowarski. When U-235 and U-238 absorb slow neutrons, U-235's ability to perform fission is much greater than U-238.

At the same time, U-238 is more likely to form a new isotope, U-239, which quickly emits electrons to create a new element with a atomic atom of 239 and a number of 94 also has a larger half-life. Since then, Bretscher and Feather have formed the theory of the number 94 element that can easily be fissioned by slow neutrons and fast neutrons. This added chemical advantages to uranium in extracting ore from mines with superior properties.

The new discovery was also based on an independent study by the American team McMillan and Abelson in 1940. The Cambridge team named the new elements Neptunium number 93 and Plutonium number. Brand 94 is based on the names of the planets Hai Vuong and Pluto. A coincidence is that the US team has also proposed similar names for the two new elements mentioned in 1941.

The first model was developed

Picture 8 of History of formation and development of nuclear energy
Rudolf Ernst Peierls (1907-1995) who made a great contribution to the study of the creation of the atomic bomb later

In March 1941, the first U-235 fission process was officially verified. This verified the initial prediction of Peierls and Frisch in 1940 that most collisions between neutrons and U-235 atoms result in fission, regardless of whether the neutron is slow or fast. all have the same effect. Later in the validation experiment, the researchers were well aware that slow neutrons had much better reaction efficiency. This has contributed greatly to the development of nuclear reactors. However, at this stage, the validation study strongly boosted the development of atomic bombs.

Peierls stated that there was no doubt about its hypothesis when it was possible to use pure U-235 to make an atomic bomb. Peierls proposed an atomic bomb model with an 8-kilogram U-235 block made in spherical form. However, he thinks it is possible to reduce the weight of the bomb using a suitable type of neutron reflector. However, actual measurements to find the exact parameters still need to be studied. Even so, the British government has been pushing for a formal model in the shortest time.

Picture 9 of History of formation and development of nuclear energy
Report published by MAUD about achievements in the manufacture of atomic bombs

The end result is two reports published by MAUD in July 1941 entitled "Using uranium for atomic bombs" and "Using uranium as an energy source." The first report indicated that it was possible to build an atomic bomb weighing 12 kg with the ability to create an explosion equivalent to 1800 tons of TNT explosives and release large amounts of photo-capable radioactive material. enjoy at the place where the explosion occurred for a long time. It is estimated that about 5 million dollars a day should be used and a large amount of skilled labor to create 1 kg of U-235 per day. Concerned that the Germans could also create similar weapons, Britain immediately wanted to prioritize collaboration with the US to quickly build an atomic bomb to serve the urgent needs of war.

The second MAUD report has shown that it is possible to use heat to provide the initial energy for fission in atomic bombs and to add a large amount of other radioisotopes. to replace uranium in nuclear reactions. The report also indicates that heavy and graphite water can be used to control the reaction process. You can even use plain water if you use pure U-235. This is the first model of uranium boiler still used to exploit atomic energy to this day. At the same time, MAUD has asked Halban and Kowarski to move to the United States to coordinate large-scale heavy water production while, in the UK, Bretscher and Feather continue to study the feasibility of using Plutonium for use. for atomic bombs to replace U-235.

These two reports shaped the successful construction of the atomic bomb as well as the nuclear boilers. These two research papers also led Britain to take the lead in nuclear energy technology in the context of what is now called "the most effective method ever used to use nuclear energy." Of course, the US highly appreciated the research results of British scientists, then, the research objectives of the US National Science Institute and many researchers turned to the pursuit of particle energy goals. multiply.

After that, the need for the US to quickly possess nuclear weapons became ever more urgent after Japan attacked Pearl Harbor and the US formally entered the war in July 1941 in order to make a turning point for the war. All US resources are devoted to developing atomic bombs.

Manhattan project

The Americans spend their day and night researching and manufacturing with all their resources and results, of course, quickly surpassing the British. Research continues to expand and is regularly exchanged between the two countries. In 1942, a number of important British scientists visited the United States and were given access to all information about research done by the United States.

Now, the US side is conducting parallel research on 3 different nuclear reactive models: Professor Lawrence from the University of California proposed using electromagnetic separation techniques, EV Murphree proposed lower centrifugation method. Professor Beams' contribution, and finally the diffusion-gas coordination method studied by Professor Urey from Columbia University. At the same time, the responsibility to study the construction of the Plutonium fission nuclear reactor was given to Arthur Compton at the University of Chicago. On the side of British scientists, only attention is paid to the ability to use gas diffusion method.

Picture 10 of History of formation and development of nuclear energy
Churchill signed with US President Roosevelt at the Quebec conference in 1943

In June 1942, the US military carried out development, model design, material procurement and selection of plant networks to pilot four methods proposed by scientists to produce large-scale heavy water production (because no research has yet to prove its feasibility and superiority). This has caused many obstacles for British and Canadian scientists who are co-researching some aspects of heavy water production. Later, the then Prime Minister of England Churchill proposed information about the cost of building a heavy water plant, a nuclear reactor in the UK.

After months of negotiations, an agreement was signed by Churchill with US President Roosevelt in Quebec in August 1943. Accordingly, the British gave all their nuclear research reports to the US, in return. He will receive a copy of the progress report in General Groves' nuclear weapons research. Subsequent reports show that the United States has spent huge amounts of up to $ 1,000 million for atomic bombs alone, without any other application.

Picture 11 of History of formation and development of nuclear energy
Test the first nuclear bomb in the Manhattan project

In December 1942, Fermi conducted a graphite test to control the process of conducting nuclear reactions at the University of Chicago. The success of the experiment marked the first time that the chain reaction could be controlled.

At the same time, a plutonium fission reactor was built at Argonne, followed by other furnaces at Oak Ridge and Hanford, along with another factory built with the rut ripping cycle. In addition, four heavy water plants were built, one in Canada and the other three in the US. Manhattan Project Director, physicist Robert Oppenheimer chaired the research team at the secret lab in Los Alamos, New Mexico to design and build both U-235 bombs and Pu-239. As a result of all research efforts, along with the contributions of British researchers, a large amount of U-235 and Pu-239 with high purity has been successfully enriched. Most of the uranium ore comes from the Congo.

The first nuclear device was successfully tested in Alamagodro, New Mexico state, on July 16, 1945. The device used plutonium created in a nuclear tube. The decision group did not need to test the U-235 bomb model due to the simpler operating principle. The first atomic bomb, containing U-235, was dropped on HIroshima on August 6, 1945. The second bomb, containing Pu-239, was dropped on Nagasaki on August 9 of the same year. On the same day, the Soviet Union declared war on Japan and finally, on August 10, 1945, the Japanese government surrendered.

Soviet bomb

Initially, Stalin did not pay much attention to developing nuclear weapons as well as atomic bombs until intelligence about German, British and American research. In 1942, in consultation with the generals, Stalin eventually accepted the development of nuclear weapons with an estimate that the time was not too long and did not require much resources. Igor Kurchatov, một nhà nghiên cứu trẻ tuổi và chưa được biết đến đã được chọn để theo đuổi dự án vào năm 1943 và trở thành giám đốc phòng thí nghiệm số 2 thành lập tại vùng ngoại ô Moscow. Sau đó, phòng thí nghiệm được đổi tên thành Viện năng lượng nguyên tử Kurchatov với trách nhiệm tổng thể là nghiên cứu chế tạo bom nguyên tử.

Nghiên cứu được thực hiện trên 3 phương diện chính: kiểm soát được phản ứng dây chuyền, tìm phương pháp tách đồng vị và thiết kế nên các quả bom từ Uranium và plutonium đã được làm giàu. Các nỗ lực ban đầu đã chế tạo thành công dây chuyền phản ứng dùng các thanh graphite và nước nặng để điều tiết phản ứng. Các phương pháp tách đồng vị được thử nghiệm bao gồm: khuyếch tán nhiệt, khuyếch tán khí và tách điện từ.

Picture 12 of History of formation and development of nuclear energy
Igor Kurchatov, nhà vật lý có đóng góp to lớn cho sự phát triển bom nguyên tử tại Nga

Sau khi phát xít đầu hàng vào tháng 5 năm 1945, các nhà khoa học Đức đã được tuyển dụng để trong chương trình chế tạo bom nguyên tử nhằm tìm cách hữu hiệu để tách các đồng vị trong quá trình làm giàu uranium. Ngoài 3 phương pháp được nghiên cứu trước đó, các nhà khoa học đã đề xuất thêm phương pháp tách ly tâm trong quá trình làm giàu uranium. Tuy nhiên, sau thử nghiệm thành công bom nguyên tử của Mỹ vào tháng 7 năm 1945 đã ít nhiều ảnh hưởng đến các nỗ lực của Liên Xô. Bấy giờ, Kurchatov vẫn đang trên một tiến độ khá lạc quan với việc chế tạo bom uranium và Plutonium. Ông bắt đầu thiết kế một lò phản ứng sản xuất plutonium quy mô công nghiệp trong khi các nhà khoa học khác nghiên cứu tách đồng vị U-235 dựa trên các tiến bộ của phương pháp khuyếch tán khí.

Dựa trên các thành công của công nghệ làm giàu uranium từ năm 1945, Liên Xô quyết định xây dựng các nhà máy làm giàu công nghệ khuyếch tán khí đầu tiên tại Verkh-Neyvinsk cách Yekaterinburg 50 km. Sau đó, cục thiết kế vũ khí hạt nhân và hàng loạt các nhà máy được xây dựng và được sự hỗ trợ của nhiều nhà khoa học của Nga lẫn Đức. Vào tháng 4 năm 1946, công việc thiết kế bom đã được chuyển đến cục thiết kế 11 có trụ sở cách Moscow 400 km. Nhiều chuyên gia đã được chỉ thị tham gia chương trình bao gồm cả nhà luyện kim Yefim Slavsky với nhiệm vụ là ngay lập tức chế tạo than chì tinh khiết để làm công cụ điều tiết trong lò phản ứng hạt nhân. Các thanh điều tiết đầu tiên đã được chính thức sử dụng vào tháng 12 năm 1946 tại phòng thí nghiệm số 2 và số 3 tại Moscow (hiện nay là viện vật lý học thực nghiệm).

Dựa trên các thông tin tình báo, nghiên cứu quả bom tại Nagasaki kết hợp với các nghiên cứu trước đó, cuối cùng vào tháng 8 năm 1947, một mô hình quả bom thử nghiệm đã được thiết lập tại Semipalatinsk Kazakhstan và sẵn sàng cho một vụ nổ thử nghiệm. Tuy nhiên, 2 năm sau đó, quả bom đầu tiên mang tên RSD-1 chính thức được thử nghiệm tại đây. Dù vậy, ngay từ tháng 8 năm 1949, nhóm các nhà khoa học lãnh đạo vởi Igor Tamm và cả Andrei Sakharov đã bắt đầu thực hiện các nghiên cứu nhằm chế tạo ra thế hệ tiếp theo: bom hydro.

Sự hồi sinh của lò hơi hạt nhân cho mục đích hòa bình

Sau chiến tranh thế giới thứ 2, các nghiên cứu trước đó về vũ khí hạt nhân bắt đầu được xem xét để phục vụ cho mục đích hòa bình. Dù vũ khí hạt nhân vẫn được 2 bên của "bức tường sắt" chia cắt châu Âu, những vẫn có một nguồn lực lớn được đầu tư nhằm phát triển năng lượng hạt nhân cho hơi nước và điện năng. Trong quá trình chạy đua vũ khí, các nước phương Tây lẫn Liên Xô đều mua hàng loạt công nghệ xoay quanh năng lượng hạt nhân và trong quá trình nghiên cứu, các nhà khoa học đã phát hiện ra rằng còn có thể khai thác trực tiếp năng lượng hạt nhân để tạo ra điện năng. Điều này đã mở ra rất nhiều tiềm năng cho năng lượng hạt nhân, từ cung cấp lưới điện quốc gia cho đến động cơ cho tàu ngầm.

Vào năm 1953, tổng thống Mỹ Eisenhower đã đề xuất chương trình "hạt nhân cho hòa bình" nhằm kêu gọi các nghiên cứu hạt nhân hướng tới phát điện đồng thời thiết lập phát triển ngành công nghiệp điện hạt nhân dân sự tại Mỹ.

Tại Liên Xô, nhiều nghiên cứu khác nhau cũng đã được thực hiện tại các nhà máy điện trên khắp cả nước nhằm cải tiến quá trình thực hiện phản ứng hạt nhân và phát triển những ứng dụng mới. Vào tháng 5 năm 1946, viện Vật lý kỹ thuật điện đã được thành lập với mục tiêu phát triển công nghệ điện hạt nhân. Các nhà máy điện hạt nhân được thành lập dựa trên nguyên lý trước đó là sử dụng than chì và nước nặng để kiểm soát quá trình phản ứng. Đây là mô hình cơ bản vốn được sử dụng cho mục đích quân sự trong thời chiến để làm giàu Plutonium bao gồm cả nhà máy hạt nhân nổi tiếng Chernobyl. Lò phản ứng AM-1 hạt nhân an toàn đã đạt công suất cung cấp điện năng 30 MWt và tiếp tục sản xuất điện cho tới năm 1959. Sau đó cho tới năm 2000, đây được sủ dụng như trung tâm nghiên cứu và sản xuất đồng vị phóng xạ tại Nga.

Năng lượng hạt nhân được thương mại hóa

Picture 13 of History of formation and development of nuclear energy
Lối vào lò phản ứng hạt nhân thương mại Yannkee Rowe​

Tại Mỹ, Westinghouse thiết kế ò phản ứng hạt nhân chịu áp lực thương mại đầu tiên với công suất 250 MWe. Nhà máy mang tên Yankee Rowe được khởi công xây dựng từ năm 1960 và chính thức đi vào hoạt động vào năm 1992. Cùng lúc đó, lò phản ứng nước sôi (BWR) với công suất 250 MWe được phát triển bởi phòng thí nghiệm quốc gia Argonne. Nhà máy đầu tiên áp dụng công nghệ lò BWR mang tên Dresden-1 được chính thức thiết kế và xây dựng bởi General Electric vào năm 1960. Cho đến cuối những năm 1960, mô hình lò PWR và BWR đã có được đặt hàng từ rấy nhiều nơi với công suất được nâng lên đến 1000 MWe. Từ những năm 1970 đến năm 2002, ngành công nghiệp năng lượng hạt nhân gặp phải một số suy giảm và trì trệ. Một vài lò phản ứng được đặt hàng, nhưng mãi đến những năm 1980 thì con số này mới tăng lên hơn 30% và hiệu quả sử dụng cũng tăng lên tới 60%.